cleansky-liftt.eu - Light Innovative Flying Tiltrotor Tail (LIFTT) – Project page

Example domain paragraphs

Through this program first-hand experience on a flying demonstrator can be obtained in near operational conditions. A successful flying demonstrator will open the door for wider application of this technology in commercially operated vehicles of all sorts. This will enable aircraft OEMs to design aircraft with ever lower structural weight and consequently equivalent lower energy consumption and lower CO 2 and NOx emissions.

Thermoplastics materials are more ductile than thermosets and are therefore more robust with respect to impact damage. Advanced welding techniques allow a high level of parts integration, eliminating to a large extent the application of costly fasteners, commonly used in traditional thermoset composite parts. Also hot forming processes allow more out of autoclave operations, which results in dramatically more energy-efficient production when with thermoset materials. In economic terms, these technical advan

To develop and manufacture the tail section for the NGCTR, achieving the maximum weight benefits possible for the current state of the art through the application of new thermoplastic materials. LIFTT is aiming for 20% weight benefit for a series production design when compared to aluminium and 5-10% when compared to thermoset composites.